Hoax Detection Through the Method of Convolutional Neural

Authors

  • Akmarzhan A. Nogaibayeva Suleyman Demirel University
  • Gulzhaina K.Kassymova Abai Kazakh National Pedagogical University
  • Sulis Triyono Universitas Negeri Yokyakarta
  • Binar Winantaka Universitas Negeri Yokyakarta

Keywords:

CNN, Data Enhancement, Detection, EDA Approach, Hoax

Abstract

The term "hoax" or "fake news" refers to the deliberate propagation of false material on social media in order to confuse and mislead readers in order to achieve an economic or political purpose. Furthermore, the increasing diversity and number of participants in the sphere of news authoring and transmission have resulted in the creation of news pieces that must be acknowledged regardless of whether they are trustworthy or not. Furthermore, hoaxes might undermine Indonesian society's social and political features. In 2016, Central Connecticut University published The World's Most Literate Nations, in which Indonesia ranked 60th out of 61 countries, indicating that Indonesian media literacy still needs to improve in terms of critically evaluating information and distinguishing between fake news and valid news. Based on this description, the research will develop the Synonym-Based Data Augmentation for Hoax Detection method and Easy Data Augmentation (EDA) approach. This study yielded an accuracy of 8.81, showing that it is effective at spotting fake news.

References

Agustiningsih, P., Rosnidah, I., & Prayitno, A. (2023). Implementation of the Smart Indonesia Program in Order to Improve the Quality of Education at Madrasah Aliyah Ma'had Al-Zaytun. Publica: Jurnal Pemikiran Administrasi Negara, 15(3), 122-127.

Albashish, D. (2022). Ensemble of adapted convolutional neural networks (CNN) methods for classifying colon histopathological images. PeerJ Computer Science, 8. https://doi.org/10.7717/peerj-cs.1031

Alisah, S., Siswoyo, M., Permana, I., & Prayitno, A. (2023). Implementation of EMIS 4.0 Application Management in Madrasah Education Data Collection to Support the Policy of the Ministry of Religion of the Republic of Indonesia at Tsanawiyah Madrasah MaHad Al-Zaytun, Gantar District, Indramayu. Publica: Jurnal Pemikiran Administrasi Negara, 15(3), 116-121.

and Life Science, 2. https://doi.org/10.21070/pels.v2i0.1136 Salahuddin, Z., Woodruff, H. C., Chatterjee, A., &

Anton, A., Nissa, N. F., Janiati, A., Cahya, N., & Astuti,

Apriliyanto, A., & Kusumaningrum, R. (2020). Hoax Detection in Indonesia Language Using Long Short-Term Memory Model. Sinergi, 24(3), 189.https://doi.org/10.22441/sinergi.2020.3.003

Borisov, V., Leemann, T., Sessler, K., Haug, J.,Pawelczyk, M., & Kasneci, G. (2022). Deep Neural Networks and Tabular Data: A Survey. IEEETransactions on Neural Networks and LearningSystems. https://doi.org/10.1109/TNNLS.2022.3229161

Buhrmester, V., Münch, D., & Arens, M. (2021). Analysisof Explainers of Black Box Deep Neural Networks for Computer Vision: A Survey. Machine Learning and Knowledge Extraction,3(4).https://doi.org/10.3390/make3040048

Christina Gregory. (2017). Internet Addiction Disorder - Signs, Symptoms, and Treatments. Vertical Health LLC.

D. (2021). Hoax Analyzer for Indonesian News Using Deep Learning Models. Procedia Computer Science, 179, 704–712.https://doi.org/10.1016/j.procs.2021.01.059

Defriani, M., & Jaelani, I. J. (2022). Recognition of Regional Traditional House in Indonesia Using Convolutional Neural Network (CNN) Method. Journal of Computer Networks, Architecture and High Performance Computing, 4(2). https://doi.org/10.47709/cnahpc.v4i2.1562

Ghinadya, & Suyanto, S. (2020). Synonyms-Based Augmentation to Improve Fake News Detection using Bidirectional LSTM. 2020 8th International Conference on Information and Communication Technology, ICoICT 2020.

Gusfa, H., & Kadjuand, F. E. D. (2020). Political Agonism for Indonesian Cyberpolitic: Critical Cyberculture to Political Campaign of 2019 Indonesian Presidential Election in Twitter. Nyimak: Journal ofCommunication, 4(2).

Halimah, L. S., Adialita, T., Septiarini, E., Rahmi, D., Prayitno, A., Sukirman, S., & Hardiningtya, K. (2025). RAMPES: Remaja Peduli Sampah di Bandung Raya. Jurnal Abdimas Kartika Wijayakusuma, 6(1), 445-452.

Hao, Z., Li, M., Yang, W., & Li, X. (2022). Evaluation of UAV spraying quality based on 1D- CNN model and wireless multi-sensors system. Information Processing in Agriculture.https://doi.org/10.1016/j.inpa.2022.07.004

Herrero-Diz, P., & Pérez-Escolar, M. (2022). Analysis of Hoaxes about COVID-19 Debunked by Maldita and Colombiacheck: Effects of the Infodemic on the Behavior of Society. Palabra Clave, 25(1). https://doi.org/10.5294/pacla.2022.25.1.7

https://doi.org/10.1109/ICoICT49345.2020.9166230

https://doi.org/10.31000/nyimak.v4i2.2685

https://doi.org/10.3389/fncom.2022.822237 Youssef, A. M., Pradhan, B., Dikshit, A., Al- Katheri, M.

https://www.ceeol.com/search/article- detail?id=946040

Jormand, H., Bashirian, S., Barati, M., Khazaei, S., Jenabi, E., & Zareian, S. (2021). A Qualitative Study On People’s Experiences Of Covid-19 Media Literacy. Media Literacy And Academic Research, 4(1). Retrieved from

Jurnal Ilmu Sosial Dan Ilmu Politik, 22(2). https://doi.org/10.22146/jsp.34614

Khidhir, S. (2019). Indonesia is too slow! Theaseanpost. Kurniawan, A. A., & Mustikasari, M. (2021). Implementasi Deep Learning Menggunakan Metode CNN dan LSTM untuk Menentukan Berita Palsu dalam Bahasa Indonesia. Jurnal Informatika Universitas Pamulang, 5(4),544. https://doi.org/10.32493/informatika.v5i4.6760

Lambin, P. (2022). Transparency of deep neural networks for medical image analysis: A review of interpretability methods. In Computers in Biology and Medicine (Vol. 140) https://doi.org/10.1016/j.compbiomed.2021.1051 11

M., Matar, S. S., & Mahdi, A. M. (2022). Landslide susceptibility mapping using CNN-1D and 2D deep learning algorithms: comparison of their performance at Asir Region, KSA. Bulletin of Engineering Geology and the Environment, 81(4). https://doi.org/10.1007/s10064-022- 02657-4.

Marbaro, A., Prayitno, A., & Prihartoro, M. (2025). Peran TNI-POLRI Dalam Penanggulangan Bencana Kebakaran Hutan Dan Lahan Di Wilayah Kabupaten Muaro Jambi. Jurnal Ilmiah Muqoddimah: Jurnal Ilmu Sosial, Politik, dan Humaniora, 9(3).

Marlinda, M., Siswoyo, M., & Prayitno, A. (2023). Pengaruh Kebijakan Pemberian Bantuan Operasional Sekolah (BOS) Terhadap Kinerja Guru Bersertifikasi di Madrasah Aliyah, Ma’ had Al-Zaytun, Kecamatan Gantar, Indramayu. Ministrate: Jurnal Birokrasi dan Pemerintahan Daerah, 5(3), 473-482.

Montavon, G., Samek, W., & Müller, K. R. (2018). Methods for interpreting and understanding deep neural networks. In Digital Signal Processing: A Review Journal (Vol. 73).https://doi.org/10.1016/j.dsp.2017.10.011

Mufid, F. L., & Hariandja, T. R. (2019). Efektivitas Pasal 28 Ayat (1) UU ITE tentang Penyebaran Berita Bohong (Hoax). Jurnal Rechtens, 8(2). https://doi.org/10.36835/rechtens.v8i2.533

Mukhtadi, M., Prayitno, A., Rachman, A., & El Harry, P. S. F. (2022). Management Of Pancasila And Citizenship Education In The Prevention And Handling Of Radicalism And Terrorism In The State Defense System. Jurnal Pertahanan: Media Informasi tentang Kajian dan Strategi Pertahanan yang Mengedepankan Identity, Nasionalism dan Integrity, 8(1), 166-176.

Nayoga, B. P., Adipradana, R., Suryadi, R., & Suhartono,

Nugroho, B. A., Maarif, S., Yulivan, I., & Prayitno, A. (2025). Pembentukan Kawasan Ekonomi Khusus (KEK) di Perbatasan Wini, Indonesia dengan Oecusse, Timor Leste Guna Meningkatkan Kesejahteraan, Ketahanan Pangan dan Keamanan di Perbatasan. Ranah Research: Journal of Multidisciplinary Research and Development, 7(3), 1694-1702.

P. (2021). Application of Deep Learning Using Convolutional Neural Network (CNN) Method For Women’s Skin Classification. Scientific Journal of Informatics, 8(1). https://doi.org/10.15294/sji.v8i1.26888

Prayitno, A. (2023). Business Process Automation as an Innovative Strategy in Modernizing Corporate Business Administration. Journal of Management, 2(1), 86-101.

Prayitno, A. (2023). Digitalization in Administration Business: Opportunities and Challenges in the Technology Era. Jurnal Sosial Sains dan Komunikasi, 2(1), 147-157.

Prayitno, A. (2023). Innovation Strategy in Business: Increasing Efficiency and Competitiveness in the Digital Age. Jurnal Ekonomi, Akuntasi dan manajemen Indonesia (JEAMI), 2(01), 140-150.

Prayitno, A. (2023). Technological innovation in public administration transformation: Case study of e-government implementation in Indonesia. Journal of Governance, 8(4), 628-642.

Prayitno, A. (2024). LOCAL POLITICAL COMMUNICATION STRATEGY IN IMPROVING VILLAGE PUBLIC SERVICE PERFORMANCE. Jurnal Wacana Politik, 9(3).

Prayitno, A. (2024). Management Risk in Business Defense: Administrative Studies Business to Security Supply. Jurnal Price: Ekonomi dan Akuntasi, 3(01), 91-101.

Prayitno, A. (2024). Manajemen Administrasi Publik Indonesia dalam Mengoptimalkan Manfaat dan Mengatasi Tantangan IA-CEPA. ijd-demos, 6(4).

Prayitno, A. (2024). OPTIMALISASI KINERJA: RENCANA DAN PROGRES REFORMASI BIROKRASI KEMENTERIAN PERHUBUNGAN. Jurnal Academia Praja: Jurnal Magister Ilmu Pemerintahan, 7(1), 28-42.

Prayitno, A. (2024). Pro Kontra Kebijakan Pembatasan Barang Bawaan Luar Negeri: Optimalisasi Peran Bea Cukai Vis a Vis Mispersepsi Publik. Dinamika Global: Jurnal Ilmu Hubungan Internasional, 9(1), 59-85.

Prayitno, A. (2024). The Role of Supply Chain Management in Enchancing the Competiveness of Local Products. Journal of Law, Social Science and Humanities, 1(2), 220-235.

Prayitno, A. (2024). Urgensi Program Gerakan Literasi Desa Di Indonesia. Caraka Prabu: Jurnal Ilmu Pemerintahan, 8(1), 99-126.

Prayitno, A. (2025). Digitalization of Business Administration in Government: Strategy towards Smart Government. Journal of Governance, 10(1).

Prayitno, A. (2025). Sustainable Business Practices in the Defense Industry: Between Efficiency and National Security. MAR-Ekonomi: Jurnal Manajemen, Akuntansi Dan Rumpun Ilmu Ekonomi, 3(02), 87-95.

Prayitno, A. Arief Prayitno-Jurnal Internasional REvisi. Unhan RI.

Prayitno, A. Arief Prayitno-KUM C.

Prayitno, A., & Sutrisno, E. (2022). Policy of KODIM 0501 Central Jakarta for Handling of the COVID-19 Pandemic in Central Jakarta. Daengku: Journal of Humanities and Social Sciences Innovation, 2(2), 171-180.

Prayitno, A., & Sutrisno, E. (2024). The implementation of national defense policy: understanding the concept in the millennial era. Journal of Law and Sustainable Development, 12(1), e2353-e2353.

Prayitno, A., & Tahir, R. (2022). Servant Leadership And Organizational Performance Systematic Literature Review Study. AdBispreneur: Jurnal Pemikiran dan Penelitian Administrasi Bisnis dan Kewirausahaan, 7(1).

Prayitno, A., & Tahir, R. (2022). Servant Leadership Dan Kinerja Organisasi Study Sistematik Literatur Review. Adbispreneur: Jurnal Pemikiran Dan Penelitian Administrasi Bisnis Dan Kewirausahaan, 7(1), 29-38.

Prayitno, A., Sutrisno, E., Rahman, A., & Carla, B. (2021). Implementation Of Local Goverment Policies In The Utilization Of Groundwater For Business Activities. Pena Justisia: Media Komunikasi dan Kajian Hukum, 20(2).

Prayitno, A., Sutrisno, E., Rahman, A., & Carla, B. (2021). Implementation Of Local Goverment Policies In The Utilization Of Groundwater For Business Activities. Pena Justisia: Media Komunikasi dan Kajian Hukum, 20(2).

Putra, O. V., Musthafa, A., Nur, M., & Rido, M. (2021). Classification of Calligraphy Writing Types Using Convolutional Neural Network Method (CNN). Procedia of Engineering

Samoedra, A. D. A., Sutrisno, S., Sugiarto, Y., Suhud, R. C., Prayitno, A., Fauziah, F. N., ... & Nugrayasa, K. I. (2025). Optimalisasi Manajemen Pelayanan Usaha Kesehatan Sekolah (UKS). Jurnal Abdimas Kartika Wijayakusuma, 6(1), 130-136.

Santoso, H. A., Rachmawanto, E. H., Nugraha, A.,Nugroho, A. A., Setiadi, D. R. I. M., & Basuki, R. S.(2020). Hoax classification and sentiment analysisof Indonesian news using Naïve Bayesoptimization. Telkomnika (Telecommunication Computing Electronics and Control), 18(2). https://doi.org/10.12928/TELKOMNIKA.V18I2. 14744

Semiawan, C. R. (2017). Metode Penelitian Kuantitatif. Grasindo

Shao, X., & Kim, C. S. (2022). Unsupervised Domain Adaptive 1D-CNN for Fault Diagnosis of Bearing.Sensors, 22(11). https://doi.org/10.3390/s22114156

Singh, K., Scholar, R., Mahajan, A., & Mansotra, V. (2021). 1D-CNN based Model for Classification and Analysis of Network Attacks. International Journal of Advanced Computer Science and Applications, 12(11). https://doi.org/10.14569/IJACSA.2021.0121169

Spera, R., & Peña-Guzmán, D. M. (2019). The Anatomy of a Philosophical Hoax: The Politics of Delegitimation in Contemporary Philosophy. Metaphilosophy, 50(1–2). https://doi.org/10.1111/meta.12343

Sugiyono. (2019). Metode Penelitian Kuantitatif, Kualitatif, dan R&D (1st ed.). Penerbit Alfabeta.

Sutrisno, E., & Prayitno, A. (2023). Legal Essence of Pancasila As the Basis of the Reality of Indonesian Life: To Improve the Welfare of the Fishing Community. Russian Law Journal, 11(9S), 290-296.

Tahir, R., Rudiyanto, A. P., Amiruddin, D., & Rosita, T. (2019). Employee Competencies and Compensation Strategies as Company's Strategic Effort to Escalate Employee Performance. Int. J. Recent Technol. Eng, 8(3), 7200-7208.

Tang, W., Long, G., Liu, L., Zhou, T., Jiang, J., & Blumenstein, M. (2020). Rethinking 1D-CNN for Time Series Classification: A Stronger Baseline. ArXiv. Retrieved from https://www.arxiv- vanity.com/papers/2002.10061/

Utami, P. (2019). Hoax in modern politics: The meaning of hoax in Indonesian politics and democracy.

Utami, P. (2019b). Hoax in Modern Politics. Jurnal Ilmu Sosial Dan Ilmu Politik, 22(2). https://doi.org/10.22146/jsp.34614

Wei, J. & Zou, K. (2019). EDA:Easy Data Augmentation Techniques for Boosting Performance on Text Classification Tasks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, 6382–6388. https://doi.org/10.48550/arXiv.1901.11196

Wu, Y. Y., Hu, Y. S., Wang, J., Zang, Y. F., & Zhang, Y. (2022). Toward Precise Localization of Abnormal Brain Activity: 1D CNN on Single Voxel fMRITime-Series. Frontiers in Computational Neuroscience, 16.

Downloads

Published

2023-01-03

How to Cite

A. Nogaibayeva, A., K.Kassymova, G., Triyono, S., & Winantaka, B. (2023). Hoax Detection Through the Method of Convolutional Neural. Journal of Education and Technology Development, 1(2), 70–80. Retrieved from https://myjournal.or.id/index.php/JETD/article/view/47

Most read articles by the same author(s)